
? 4 

BY 
Donald J. Jezewski 

NASA I’hnned Spacecraft Center 
Hauston, Texas, U.S.A. 

Presented at the 
XVth International Astronautical Congress 

Warsaw, Poland 
September 7-12, 1964 



1 

THREE-DIMENSIONAL G U I W C E  EQUATIONS 

FOR QUASI-OETIMUM SPACE MANEWWS 

By Donald J. Jezewski 

An analytical  technique has been derived by operating on a set of 
l inearized two-body equations (ref. 1) with the classical  calculus of 
variations t o  determine a guidance l a w .  A three dimensional case, i n  
which aerodynamic forces are neglected, is treated.  The solution dif-  
fers from tha t  derived i n  reference 2 i n  t ha t  a continuous constant 
thrust  rather than a constant acceleration is  assumed. 
are f irst  reduced t o  a flat-body se t  i n  two dimensions t o  determine w h a t  

&&-is a i.&id sol-uiior, for a clss 
of launch and landing trajectories. By integration, three simultaneous 
transcendental equations i n  three unknowns can be derived from t h i s  set 
of equations. The downrange coordinate was assumed t o  be f r ee  a t  the 
terminal time. 
optimum t ra jec tor ies  t o  determine what errors are present and which 
terms, deleted by the  flat-body approximation, are t h e  principal con- 
t r ibutors  t o  the error. 
duced t o  the  flat-body set of equations t o  sirrmlate the deleted terms 
i n  an a t t m p t  t o  reduce these errors. 
grated, and the  results are compared with the optimum fo r  a number of 
t r a j e c t o r i e s . a e  technique i s  extended t o  the three dimensional case, 
and f ive  independent constants are generated t o  satisfy the f ive  con- 
s t r a i n t  equations. 
lus t ra ted  by using the  analytic solution as a feedback t o  the exact 
integrated mode. Variations i n  the times of correction are investigated 

The equations 

s + . p r G x - ~ ~ ~ D E s  my bz -&de md 

Trajectories resulting from this set are canpared with 

Suitable approximate expressions are intro- 

The equations a r e  again inte- 

Guided solutions f o r  launches and landings axe il- 

(2 .4  * 
t o  determine the error  incurred as a function of s tep  size. 

The author wishes t o  acknowledge the assistance of Mr. James Raney 
and M r .  Ray Roten of the Computation and Analysis Division, NASA Mmned 
Spacecraft Center, who obtained the time-optimum trajectory data for 
purposes of comparison. 
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SYMBOLS 

AO 

2 
A 

a v’ “w 

I 
SP 

i 

i n i t i a l  th rus t  acceleration, T/m ft/sec2 0’ 

azimuth angle of velocity, measured posit ive fram 
north, deg 

coefficients of time series 

components of acceleration defined by equations (59), 
(60), and (61), ft/sec2 

constant of integration defined by equation (24) 

coefficients of time series 

constant of integration defined by equation (56) 

i n i t i a l  values of -range multipliers, radians/sec 

constant of integration defined by equation (57) 

transcendental f’unctions 

gravi tat i o n d  ac celerat ion, ft/s ec 2 

coefficients of t i m e  series 

specific impulse, sec 

inclination of orbi ta l  plane with respect t o  i n e r t i a l  
reference frame, deg 

constant defined by equations (28) and (29) 

function defined by equation (26) 

f’unction defined by equation (58) 

h c t i o n  defined by equation (25) 



m 

N 

r 

0 r 

T 

t 

v 

C 
V 

W 

x, y, z 

X,Y, 

S 

Y 

AvC 

’ A i  

e 

CL 

Q 
X 

3 

mass of vehicle, slugs 

fbnction defined by equation (37) 

radius t o  vehicle f’rom center of body, f t  

P&JS cf the reference body, f’t 

thrust, l b  

time, sec 

components of t o t a l  velocity i n  x, y, and z directions, 
respectively, ft/sec 

total velocity, ft/sec 

characteris t i c  velocity, ft/s ec 

weight of vehicle, l b  

iner t ia l  reference frame, f’t 

rotating coordinates of vehicle, f t  

tangent of X 

functions defined by equations (22), (a), (451, and 
(46), respectively 

flight-path angle, deg 

change i n  characteristic velocity, f t /sec 

change i n  inclination angle, deg 

la t i tude  angle of vehicle, deg 

n o m i z e d  mass ratio, m/mo 

longitude angle of vehicle, deg 

thrust pitch angle, m e a s u r e d  fram loca l  horizontal 
Plane, deg 

thrust yaw angle, measured positive from east, deg 
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Subscripts: 

O Y 1  i n i t i a l  and final values of s t a t e  and control variables 

A analytic quantity 

I integra+& quantita- 

n nth order term of t i m e  series 

Operators : 

( - 1  time diff erentation 

gd( 1 Gudermannian 

FORMULATION OF THE PR0BI;EM 

The mathematical model employed i n  t h i s  investigation i s  a mass 
par t ic le  with three degrees of freedom referred t o  a s e t  of rotating 
coordinates i n  which the y-axis i s  alined along the local ver t ical ,  and 
the plane formed by the x- and z-axes is the loca l  horizon. 
system and the associated notation are i l lus t ra ted  i n  figure 1. 
axis system was chosen because it is desired t o  allow the downrange 
distance (longitude) a t  the f i n a l  t i m e  x1 = x ( t  ) 
specified. I n  the rotating axis system, the velocity vector i s  located 
by the two familiar angles, r and A,; and the thrust  vector, i n  a 

similar sense, is  located by the two control angles, X (pitch angle) 
and 9.  The angles which loca te  the position-vector i n  the  i n e r t i a l  
reference frame are 8 and 8. 

The axis 
This 

t o  be f r ee  or  un- 1 

The equations of motion fo r  this model are  

x = u  

y = v  

z = w  

AO G = - u(v - w tan e ) / r  + - COB x cos ~r 
CL + = (u 2 2  + w  )/r - g + y s i n ~  AO 



*O G = - (vw + u2 tan e ) / r  + - cos x sin 9 cr 

. where 

A = T/mo 0 

= G/mo 

r =  JZ7-Z 

(is 0) ( 9 )  

The quantities u, v, and w are the velocity components along the 
x-, y-, and z-axis, respectively. 

The vehicle is assumed to have a constant thrust T and a mass 
flow rate I; which has been normalized. The initial thrust-to-mass 
ratio of the vehicle is Ao. The final time t was selected to be 
minimized since, under the above assumptions, it yields a minimum fuel 
consumption. 

1 

Equations (1) to (ll) are, of course, nonlinear, and any attempt 
to operate on them with the calculus of variations would yield an ad- 
joint set which are d s o  nonlinear. 

"he problem in the plane is solved first by using the following 
equations of motion 

x = u  (12) 

A. i = -.cos X, - uv/r u 

AO 2 + = - sin x - g + u /r cr 
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Further, i f  the radius of the at t ract ing body i s  allowed t o  approach 
inf ini ty ,  t h e  coupling effects i n  these equations vanish and the gravita- 
t iona l  acceleration approaches the surface value go. 

The following pitch-angle relationship from reference 2 is  obtained 
when the calculus of variations is applied to t h i s  reduced s e t  of equa- 
t ions when the  f inal  range is allowed t o  be free: 

where the values of 

To determine a 

c4 - c2t 

c3 
tan x = (16) 

C are constants t o  be determined. 

unique solution, the  constants C must be found as 
f u i c t l o r ~  of the desired b ~ i & s q -  CGZI*~~~CXIS. 

plished by integrating t h e  constraint equations between the bounds speci- 
f i eda t  t = O  and t =  
obtained by evaluating the pitch-angle relationship at the boundaries 
and yield 

Th,is resldt i s  ecccm- 

. The constants c /C ami c /C are 
tl 4 3  2 3  

c4 - = t an  xo 
c3 7 

i' c2 t a n X o -  t a n \  

c3 tl 
- =  

(17) 

where X = X(0) and X = X ( t l )  
0 1 

Integration of the f'lat-body equations results i n  the following 

xO, 
three simultaneous transcendental equations i n  the three unknowns 
X1, and tl. 

- g t  ( 1+-  '2) - 0 sec x1 - Bo) = 0 c.'1"1 - "5 0 1 

2 

Y 1  - WlY0 + - gotl - Botl - .2 [gd(X,) - gd(Xo) 
+1 cr 

%L 

A0a2 
+ Ka2N - - ("1 - uo)] = 0 



where 

112. 

AO"2 
(p - uo) - logeM = 0 

0 q = l - a  tanx 2 

gd(X) = loge(- X + K sec X) 

0 = - JL (vo - fiy 1 + A sec x 0 0 "2 

k - alpl - a2K & sec X1 

k - y - u2K & sec X M =  
0 

k = y  2 + U  2 
2 

N = sec X - sec X /p 0 1 1  

K = 1 (- n/2 s X s n/2)  

K = - 1 (a /2 < X < 3n/2) 

Because the control quantities occur implicitly in this set of equations, 
it is impossible to solve for them directly. 
transcendental, a first-order perturbation technique (ref. 3 )  is used to 
force the solution to converge. 
tid matrix, assumes that a solution exists if the matrix of partials 
has an inverse. 

Since the equations are 

This technique, which generates a par- 

A solution of this system of equations as campared with that of an 
optimum integrated round body is indicated in figure 2. 
the variation of characteristic velocity error with initial thrust-to- 
weight ratio for a launch to lunar orbit. 

The curve shows 



a 

It should be noted t h a t  the error generally decreases with increas- 

ing  T h o .  This follows logically since burning t i m e  tl a (T/W0)-’ and 
as t he  burning time approaches zero, the surface integrated over a p  

proaches a f la t  body. 

values of t h r u s - t - t o - w e i g h t  r a t f z  since it. is 811 i n i t i a l  boundary-value 
solution and not a guided trajectory t o  the  terminal conditions. 

The solution does not approach zero for  increasing 

The question of w h a t  can be done t o  improve this solution without 
destroying the analytic properties of the problem is now posed. 
ta inly,  the errors are the result of neglecting the cross-coupling 
e f fec ts  and set t ing g equal to a constant. 

Cer-  

Figures 3(a) and 3(b) i l l u s t r a t e  t i m e  his tor ies  of the nonlinear 
telliis 

a = uv/r 
U 

2 a = - g + u / r  
V 

f o r  a minimum-time optimum launch to lunar orb i t  as compared with those 
of the flat-body approximations. 
i n  figures 3(a) and 3(b) represents the horizontal and normal accelera- 
t ion  errors of the flat-body approximation and amounts t o  a maximum of 

5.5 f t / sec  fo r  the  normal component a t  the terminal point. The hori- 

zontal acceleration term a f o r  optimum time descents or  ascents from 

orb i t  caa be considered t o  have only a second-order effect .  For the  
case i l lustrated,  a launch t o  lunar orbit ,  the  maximum value of t h i s  

term amounts t o  less than 0.2 ft /sec . 
accounts for  the  la rges t  portion of the observed error. 

The displacement between the  curves 

2 

U 

2 Therefore, the  quantity av 

To offset  the  errors, functions are defined i n  the form 

a U = 2 hn+l tn 
n=O 
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which have the same values as the functions defined i n  equations ( 3 0 )  
and (31) at  the t w o  bounds. 
of t he  dependent variables would necessarily complicate ( i f  not corn- 
p le te ly  destroy) the guidance l a w  stated i n  equation (16). 
is acceptable because it will not alter the guidance l a w  but w i l l  only 
change the transversali ty condition of the calculus of variations. 

The introduction of a power ser ies  i n  one 

A t i m e  se r ies  

By replacing the nonlinear terms i n  the two-dimensional model with 
these t i m e  series, the  system of equations i s  integrated by using t h e  
control l a w  derived f o r  the f la t  body. The result ing three simultaneous 
transcendental equations are solved by the  method outlined f o r  the  flat- 
body case. This solution has the added complication of determining the  
constants of the parer ser ies  approximation. 

The number of coefficients required t o  simulate suff ic ient ly  the 
nonlinear t ra jec tor ies  is  determined by qualitatively examining the t i m e  
h is tor ies  of the deleted nonlinear terms. Since rn 2ii-i-ersim of a 
matrix of the order of the number of coefficients minus one i s  involved, 
it i s  desirable t o  re ta in  a minimum number of terms. For the ascent and 

gree w e r e  found t o  be suff ic ient .  
coefficients was determined by using the information on the present and 
past history of the state and control variables. 
f i c i en t s  are ei ther  set equal t o  zero (other than the f irst  term) or 
approximated by a backward integration process. 

'descent t ra jector ies  which w e r e  examined, polynomials of the  th i rd  d e  
The evaluation of the power-series 

In i t i a l ly ,  the coef- 

A comparison of t h i s  solution with the flat-body approximation and 
the s t r i c t  optimum i s  indicated i n  figures 3(a) and 3(b).  The dashed 
curve i s  the parer ser ies  approximation using a truncated ser ies  with 
four coefficients. The error  i n  the  normal acceleration term has been 
reduced t o  a negligible amount, and the  horizontal term strongly resem- 
bles the s t r i c t  optimum. The time history of the control programs and 
the terminal values of the  state variables f o r  t h i s  launch t o  l u n a r  
o rb i t  are  presented i n  f igure 4 and table  I. 
nonlinear equations were integrated at  a s tep  interval  of 2.5 seconds, 
and the analytic solution was used as a feedback control. Errors ex is t  
i n  the s t a t e  variables a t  the terminal time as a resu l t  of the correc- 
t i on  interval  and the singular nature of the guidance equations as time 
t o  go approaches zero. 
portion of the trajectory.  
ables of the analytic and optimumintegrated solutions would not be of 
i n t e re s t  since the two sets of curves are nearly coincident. 

In  these solutions, the 

An open-loop system w a s  required fo r  the last  
A time-history comparison of t h e  state vari- 

If the simplifying assumptions of this two-dimensional model are 
extended t o  that of the problem originally stated, the equations of 
motion are reduced t o  the  following form. 



10 

l i = u  

i = V  

i = W  

2 
*O tn + - cos x cos * 

1; = 1 hn+l P 
n=O 

+ = i a  t n + - s i n X  A. 
n+l P 

2 
n A~ * = 1 bn+lt + - cos X s i n  Jr 

P 

(37) 

(39) 
n=O 

The constants a, b, and h are determined by the method previously 
outlined. 

By applying the calculus of variation t o  th i s  sj-stem of equations, 
minimizing the  f ina l  time, and once again allowing the  f i n a l  value of 
x, o r  the longitude, t o  be free, the following control-angle relation- 
ships result: 

(“s - c2t)cos * 
t a n  x = 

c4 

C6 - c3t 

c4 

tan Jr = 

The solution is  now complete since f ive  independent constants 
ex is t  t o  s a t i s fy  the  f ive  constraint equations. Equation (34)  is  not 
integrated since i ts  f ina l  value i s  t o  be unspecified. 
the coupling term cos f i n  the X control l a w  increases the diffi-  
culty of integrating the linearized equation. Elimination of cos f 
reduces the  interrelationship of the control variables as indicated i n  
the  following equations : 

The presence of 



If 

then, 

where : 

c - c2t 
c4 

= s  T t an  x = 

"5 + 

sin Jr = 

=-L "6 c2 

- L = t a n X o  
c4 

1 c2 t a n x  - t a n x  

c4 
0 - =  

' 6  - = s i n  Jr 
0 c4 

1 
C s i n  Jr - s i n  Jr -z= 0 

c4 tl 

(43) 

(44) 

(49) 

(50)  

If Jr is  assumed t o  be small  so tha t  cos Jr M 1 and t a n  Jr M s i n  $, 
it can be observed tha t  although Jr i s  functionally dependent on X, 
the inverse relationship has been eliminated. 
term a where C / C  i s  the ra t io  of the control-angle ra tes .  It is  

sham subsequently how a weaker coupling relationship s t i l l  ex is t s  i n  
the constants of the  power series expansion. 

"his can be noted i n  the 

6 3 2  
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The small  angle approximation of Jr may at first appear to be an 
unusually severe restriction until the type of problem to be solved is 
considered. Lunar landings and launches are to occur at latitudes be- 
tween &laand azimuth angles of near & g @ .  Since large plane changes 
are  not expected, the assumptions and equations stated here are quite 
VnJid 

When equatfons (35) to (39) have been integrated from time t = 0 

Xo, 

to 
the following five transcendental equations in the five unknowns 
\, Jr,, ql, and t are derived. The method of solution of these 
equations is as outlined for the two-dimensional flat-body problem. 

t = tl, and a considerable amount of manipulation has been performed, 

1 

n + l  F2 = a (A sec X1 - Co) - fi 2 0' 

2 

+ bn+ltln+l 
n + l  

n=O 



where 
bGY0 - 

0 
- 

U 2 co - 

n+l 
I J = y - u o -  f hn+ltl. 

n + l  

(56)  

n=O 

As was previously mentioned, if a sma l l  angle approximation is 
made on Jr, the equations of motion appear to be uncoupled at least in 
one direction. However, for guided trajectories, a weaker coupling re- 
lationship exists in the constants of the power-series expansions: 

2 - 
a = - u(v - w tan e)/r = hn+ltn (59) U 

n=O 

a = - g + <u2 + w2)/r = 1 a tn 
V n+l 

n=O 
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Each time the t ra jectory i s  corrected, the power-series constants 
are  corrected on the basis of the present and past state as indicated 
i n  equations (59), (a), and (61). The accelerations i n  the  x and 
y directions are not independent of the acceleration i n  the z direc- 
t ion  b u t - a r e  coupled through the constants an and hn of the power 
series e 

RESULTS 

The degree of success achieved by using equations (51) t o  (58) t o  
simulate the s t r i c t  optimum can be best shown, under the assumption of 
no boundary-value errors, by performance data i n  terms of character is t ic  
velocity. This quantity, for  a constant mass-flow rate, is  a measure 
of the amount of fuel consumed. For the two-dimensional case already 
considered, the launch t o  hiim orbit., the _performance loss is approxi- 
mately 2 f t /sec with respect t o  the s t r i c t  optimum. 
performance loss, it can be assumed that the state and control variables 
closely resemble those of the integrated solution. 
X 
i n i t i a l  t i m e  and amounted t o  lo. 
control angular rates were not encountered; and as time t o  go approached 
zero, they were avoided by using an open-loop system. 

With this smail 

The control angle 
had the most noticeable deviation; the ~ i m u m  variation was at the 

Throughout the  trajectory, abnormal 

The t ra jec tor ies  presented i n  t h i s  paper are compared on the basis 
of performance i n  terms of characterist ic velocity. The s t r i c t  optimum 
and analytic control angles are also compared. A table  of errors i s  
given for each solution i n  which the terminal miss errors are indicated 
as functions of the correction intervals .  

Figure 5 is  a time-history comparison of the control angles X 
and Jr 
t o  a flare maneuver at  an al t i tude of 5,OOO feet. The so l id  curves 
represent the s t r i c t  o p t i ,  obtained through integration, and the  
dashed curves are the analytic approximations. The tendency of the  
control angle X 
ac te r i s t i c  of the  solution f o r  launches t o  and from lunar orbits.  The 
agreement i n  the yaw angle 
optimum has a rapid change i n  slope a t  which time the analytic solution 
only hints a t  following. 
the  analysis is  verified i n  t h i s  figure. A plane change of 2.8Ol7O 
w a s  required t o  satisfy the terminal state vector. 
s t a t e  variable errors and performance loss at  the  terminal t i m e ,  as 
compared w i t h  the  s t r i c t  optimum fo r  the correction in te rva ls  of 2.5, 
5.0, and 10.0 seconds. 
between corrections of the constants C defined i n  the analysis. A 
perf'onnance lo s s  of less than 1 ft /sec was obtained fo r  the boundary 

for  a descent from a circular lunar orb i t  w i t h  longitude f r ee  

t o  be linearized versions of the optimwn is a char- 

is  a l so  very good u n t i l  the s t r i c t  

The small angle approximation made on i n  

"able I1 l i s t s  the 

A correction interval  is  given as the  time 



conditions l i s t e d  fo r  the 2.>second correction interval.  
jectory had an i n i t i a l  thrust-to-weight r a t i o  of 0.4172 and a specif ic  
impulse of 314 seconds. The ini t ia l .  and f i n a l  conditions on the s t a t e  
variables are a l so  l i s t e d  i n  the table. The solutions agree very w e l l  
with the optimum with the  la rges t  errors occurring i n  velocity and 
azimuth. The apparent large error  i n  y at the  terminaJ. time is the 
resu l t  of a rapid change i n  th i s  qxmtity i n  the last  few seconds of 
the trajectory.  
f o r  a flare lIlaneuver i n  two dimensions with y1 = - llo 
well with only a 0.05" error  fo r  a correction interval  of 10 sec- 
onds. 

This tra- 

Although they are not presented i n  t h i s  paper, resu l t s  
campared very 

Velocity and azimuth angles have apparent minimum errors a t  the 
3-second correction interval whereas the errors 
iables  decrease wi th  the decreasing interval.  

Figure 6 is  the time-history comparison of 
and \I' fo r  an &scer;t frm the  lunar surface t o  
o rb i t  which has an eccentricity of 0.0429. The 
held free. The agrement i n  pi tch angle X i s  

1 "  

i n  the remaining var- 

the control angles X 
the pericynthion of an 
longitude i s  once again 
exceptionally good with 

A the maximum deviation being approximately - . 
be expected a pr ior i  since, as mentioned previously i n  the analysis, a 
high thrust-to-weight r a t i o  indicates that there i s  a short  burning 
t i m e  and tha t  the surface integrated over approaches a f l a t  body. Un- 
der these conditions, the control l a w  derived f o r  the analytic solution 
more nearly approximates the true optimum. The yaw angle solutions a t  
f irst  appear t o  be complete opposites u n t i l  consideration is  made of 
the  performed t ra jectory maneuver. Yaw angle i s  measured i n  the same 
sense as azimuth, and f o r  a launch i n  which the f l i g h t  path angle a p  
proaches 9O", the azimuth angle i s  nearly undefined. Therefore, the 

This good agrement would 2 

yaw control angle i s  poorly defined i n i t i a l l y .  
terminal boundary conditions, the  yaw angle of 
must decrease since i n i t i a l l y  it had a greater 
s t r i c t  optimum. 

Table I11 lists the s t a t e  variable errors 
the terminal t i m e  fo r  the correction intervals 
10.0 seconds. The i n i t i a l  and f i n a l  values of 

In  order t o  m e e t  t h e  
the analytic solution 
posit ive value than the 

and performance loss a t  
of 2.5, 5.0, and 
the  s t a t e  variables are 

also l i s t e d  i n  the  table.  
l . O l l > ,  and the specific impulse w a s  310 seconds. A plane change of 
l.3262O w a s  required t o  meet the terminal conditions. Contrary t o  the  
descent trajectory, velocity and azimuth have maximum errors a t  the  3 

5-second correction interval  rather than minimums. The errors i n  the 
remaining variables decrease wi th  a decreasing correction interval.  

The i n i t i a l  thrust-to-weight r a t i o  w a s  

Table IVlists the error data f o r  an optimum insertion in to  a 
circular  earth orbi t .  
satisf'y the terminal state vector. 

A smaU plane change of 1.367" was required t o  
An i n i t i a l  thrust-to-weight r a t i o  
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of 0.86 and a specific i m p u l s e  of 426 seconds were used. The i n i t i a l  
and f i n a l  conditions on the state variables are also l i s t e d  i n  the table. 
A performance loss of 239 ft/sec, or 1.28 percent with respect t o  the 
str ict  o p t i ,  w a s  obtained fo r  a correction interval  of 2.5 seconds. 
The errors  can be seen t o  be quite s m a l l  for a t ra jectory of t h i s  type. 
They fzllow the same trend as those for  the  lunar descent maneuver with 
velocity having an apparent minimum a t  a correction icterval of 5.0 sec- 
onds and the errors i n  the remaining variable decreasing w i t h  a decreasing 
interval.  

CONCLUDING REMARKS 

€&asi-optimum guidance equations i n  three dimensions for  which 
constant thrust w a s  used have been analytically derived by the calculus 
of varlatlms. The basis of the analysis i s  the analytical  solution t o  
the flat-body problem which is extended t o  simulate a round “UGQ 5y the 
addition of power series i n  time. Numerical solutions t o  the result ing 
transcendental equations have been generated by using an  i t e r a t ive  con- 
vergence technique. 

Guided t ra jec tor ies  were examined f o r  a landing on and launch from 
the l u n a r  surface and f o r  an insertion in to  earth orbi t .  The resulting 
curves f o r  the control angles agree closely w i t h  the  t rue  optimum and 
produce solutions which are more l i n e a r  than the exact curves. 
state errors and performance data are  presented f o r  the  correction 
in t e rva l s  of 2.5, 5.0, and 10.0 seconds. The errors i n  the s t a t e  vari- 
ables generally decrease with a decreasing correction in te rva l .  
lunar t ra jector ies ,  the azimuth angle w a s  difficult  t o  control and had 
terminal errors of approximately 1 percent; whereas, f o r  the earth- 
o rb i t a l  insertion trajectory, the azimuth angle error  was two magnitudes 
smaller. 

Terminal 
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TABLE 1.- COMPARISON OF TERMINAL CONDITIONS FOR AN 
0mIMUM LAUNCH n> LUNAR ORBIT 

= 0.6; I = 313 see; yo = 1,000 ft; v0 = 100 ft/sec; = 9001 SP rO 

vC’ ft/sec . . . . . . . 
yl, f t . .  . . . . . e . .  

vl, ft/sec . . . . . . . . 
r1,deg . . . .  . . . . .  
cpl, deg . . . . . . . . . 

Optimum, integrated Analytic, guided 

5,772 *5 5,774.6 

49,957.9 49,957 -4 

5,606.? - i  5 606.7 

O.OOO84 0.00341 

5 -6730 5 0-5 
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TABLE I1 0 -  TEMINAL STATE ERRORS FOR GUIDED DESCENT FROM LUNAR 

ORBIT TO FLARE AT ALTITUDE OF 5. OOO FEE3 -LONGITUDE FREE 

I n i t i a l  conditions 

T/Wo . . . . . . . . .  0.4172 

I sec . . . . . . .  314 

f t /sec . . . . . .  5. 685 

f t  . . . . . . .  .50. 000 

SP’ 

vO. 

YO’ 
rc. deg . . . . . . . .  0.0 

80’ deg . . . . . . . .  -1.532 

A=,. deg . . . . . . .  -83.38 

v0. deg . . . . . . . .  -17.93 

Ai. deg . . . . . . . .  2.8017 

Final conditions 

vl. f t /sec . . . . . . .  100 

yl. deg . . . . . . . .  -0.001T7 

el. deg . . . . . . . .  -0.39157 

ql. deg . . . . . . . .  -28.039 

Error 
I 

vC. f t /sec . . . . .  I 0 *93 

V. f t /sec . . . . . .  
y. f t  . . . . . . . .  
T. deg . . . . . . .  
0. deg . . . . . . .  
Az. deg . . . . . . .  
cp. deg . . . . . . .  

1 -990 
0.27 

0 0 5 5  
0.0022 

0.8809 
0.0157 

2.93 

0.949 
0.87 

0.2126 
0.0022 

0.3462 
0.0170 

10.0 

5-47 

1.928 

1.2326 
0.0022 

0.9121 

4.83 

0.0197 



TABLE 111.- TERWXAL STATE ERRORS FOR GUIDED ASCENT TO 

LUNAR O F B I T  - LONGI'IWDE FREE 

Error 

vC, f t /sec . . . . .  
. . . . . .  V, f t / sec  

. . . . . .  y, f t . .  

r, deg. 

e, deg . . . . . . . .  
. . . . . . .  

. . . . . . .  Az, deg 

cp, deg . . . . . . .  

I I n i t i a l  conditicms 

Correction interval,  sec 
2 -5 5.0 10.0 

1.64 3.54 11.56 

3 -63 31 007 7.004 

0.55 8.47 105 37 

0 . m  0.0506 0.0999 

0.0006 0.0003 -0.0011 

-0.1013 0 .Ugg 0 9 0937 

0.0003 0.oOdc 0.0066 

T/Wo . . . . . . . .  1.Oll5 

. . . . . .  I sec 310 SP' 
v0, f t / sec  . . . . .  100 

yo, f t  . . . . . . .  0.0 

r o , d e g . . . . . . .  85 

09 

AZO, deg . . . . . .  80 

cpo, deg . . . . . . .  -28 

deg . . . . . . .  0.9 

&, deg . . . . . . .  1.3262 

Final conditions I 

. . . . . .  vl, f t /sec 5,600 

ylJ 

Y1, deg . . . . . . .  0.0 

el, deg . . . . . . .  1.4 

AZ1, deg . . . . . .  81.5 

ft . . . . . . . .  50,000 

vi, deg . . . . . . .  -24.668 



20 

Error 

v C 9 ft/sec . . . . . .  
V, ft/sec . . . . . . .  
y, f t . .  . . . . . . .  
r, deg 

0, deg . . . . . . . .  
. . . . . . . .  

A=, deg . . . . . . . .  
cp, deg . . . . . . . .  

TABLE IV.- TERMINAL STATE ERRORS FOR GUIDED INSERTION 

INPO CIRCULAR EmTH ORBIT - LOIGITUIIE FREE 

Correction interval,  sec 
2.5 5.0 10.0 

239.17 249.58 269.63 

1.89 0.98 3.20 

0.80 9.00 70 90 

0.0052 0.0163. 0 0 5 9  

0.0047 o.oOlc6 0.0045 

0.0252 0.0262 0.0280 

0.0010 0.0050 0.0126 

! I n i t i a l  conditions 

T/Wo . . . . . . . . .  0.86207 
sec . . . . . . .  426 I 

v ~ ,  ft/sec . . . . . .  8,100 
SPY 

f t  . . . . . . .  .44>,ooo 

YO’ 

eo, deg . . . . . . . .  15 

Azo, deg . . . . . . .  80 

vo, deg . . . . . . . .  -70 

aeg . . . . . . . .  14.3 

Ai, deg . . . . . . . .  1.367 

Final conditions 1 
I 

vl, ft/sec . . . . . .  25,567 

f t  . . . . . . . .  635, OOO 

ri2 deg . . . . . . . .  -0.0018 

deg . . . . . . . .  16.502 

J’1’ 

Ael, deg . . . . . . .  88.1932 



Figure 1.- Coordinate system and angle definition. 
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Figure 2.- Flat body characteristic velocity error for a launch to 

lunar orbit. I = 420 sec; go = 5.32 ft/sec 2 . SP 
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(a)  NO^ acceleration term. 

Figure 3.- Comprison of solution obtained by using analytic and exact 

solutions fo r  launch t o  lunar orbit .  T h o  = 0.6; I = 315.0 sec . 
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(b) Horizontal acceleration term. 

Figure 3.- Concluded. 
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